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Abstract
With the recent advancement in Industrial Internet of Things (IIoT), general programmable logic controllers (PLCs) have
been playing more and more critical roles in industrial control systems (ICSs), such as providing local data processing,
decentralized control and fault diagnosis. These so called edge-PLCs, directly receive the raw data from sensors embedded
in factory equipments, put them into predefined memory space and perform analysis using programs such as the ladder
logic. The challenge is how to allocate blocks in the fixed-size memory to different sensors so as to match irregular data
flows. In this paper, we try to conduct performance analysis of different partition instances of the memory in the edge-PLC
by modeling this problem as a multiple single-server queueing systems. We assume every sensing flow is independent of
each other and has its dedicated processer. Changes can be made to partition instances to adapt to the external environment,
such as the rising of order numbers or product category switching. Each state of the environment is defined by the finite
state Markov chain and arrival of sensing data flows follow the stationary Poisson process. The data in the queue will expire
after staying in the memory for a while. The duration of availability and service is modeled as the exponential distribution.
The performance measured under different system states are analyzed in the simulation.
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1 Introduction

By integrating various sensors, mobile communications,
intelligent analysis and other technologies into every link of
industrial production process, industrial Internet of things
(IIoT) [3] has enabled industrial control systems with vast
sensing and monitoring capabilities, greatly improved man-
ufacturing efficiency and product quality while reducing
resource consumptions and manufacturing costs. In the
meantime, intelligence also means more sensing data, deep
calculation and fast response, which pushes computational-
intensive tasks close to end devices and puts heavy burden
on the computation and communication requirements.
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Edge computing (EC) [2, 16, 19] has emerged as a new
paradigm in IIoT by placing computing services close to the
physical location of either the user or the source of the data,
which provides faster, more reliable services and enables
the design of high-performance and adaptive system. In
such case, computational tasks and data traffic no longer
need to be uploaded to the cloud server and travel through
the unpredictable Internet. In the meantime, some privacy
and security issues can be avoided, if the cloud is not
trustworthy [1, 12, 17]. Therefore, EC enabled IIoT will
potentially push the traditional industry to usher into a new
stage of intelligence.

A PLC is an electronic device designed for digital oper-
ations and is specially designed for industrial production. It
contains a programmable memory, which is used to store the
internal logic program. The logic program performs logi-
cal operation, sequence control, timing, counting, arithmetic
operations and other user-oriented instructions. It also con-
trols various types of machinery or production processes
through its built-in digital or analog input/output. There-
fore, PLC is the essential part of the entire industrial control.
The enhancement of communication abilities and the devel-
opment of man-machine interface technologies with IoT,

/ Published online: 19 June 2020

Peer-to-Peer Networking and Applications (2020) 13:1830–1838

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-020-00934-1&domain=pdf
http://orcid.org/0000-0002-3403-2604
mailto: perryliu@hdu.edu.cn


www.manaraa.com

turn PLCs into a new form, edge-PLCs, which are easier
to adapt to various control systems. At the meantime, they
also bring new requirements and challenges for the technical
implementations.

In this paper, we consider a scenario of edge-PLCs
enabled industrial control system in a smart factory. These
edge-PLCs are distributed close to factory equipments,
reading data from sensors and putting them into pre-
allocated memory space for processing. Once the allocation
is determined, it is difficult to expand or re-allocate during
operation. Another fact is that most of the smart factories
support Flexible Manufacturing System, which means the
data flow from sensors may vary along the time scale.
Therefore, there exists the challenge of allocating blocks in
the fixed-size memory to different sensors in order to match
irregular data flows and maximize the system performance.
To achieve this goal, we are going to conduct performance
analysis on memory partition instances in the edge-PLC by
modeling this problem as a multiple single-server queueing
systems. We can find the optimal solution under different
system settings for the corresponding case. Finally, we test
our work on the synthetic data set with two kinds of sensors
under dual system parameters. The simulation shows the
feasibility of the proposed scheme. The key contributions of
this work are:

1) According to our best knowledge, we are the first to
identify the problem of memory allocation for edge-
PLCs in smart IIoT, which aims to maximize the
system performance under memory space constraints.

2) To accurately restore the practical scenario, we model
each state of the environment as the finite state Markov
chain and assume that arrival of data flows follow the
stationary Poisson process.

3) We carry out the performance analysis and the
synthetic simulation, regarding the system as a
multiple single-server queue.

The rest of the paper is organized as follows. Section 2
discusses data analysis, edge computing and queuing
theory related to IIoT. Section 3 proposes the math-
ematical model of the system and targeted problem.
In Section 4, the system state is defined as a Markov chain,
alongwith the calculation of its transitionmatrix and station-
ary distribution. The performance measures and synthetic
data-set based simulation are conducted and presented in
Section 5. Section 6 finally concludes the paper.

2 Related work

In IIoT, various sensors are employed in smart facto-
ries [11], collecting large amounts of data from fac-
tory machinery in a real-time manner. Besides data

forwarding [18], data and service analysis [23] is another
core means to obtain important information. By doing so,
we can optimize the operation process of the factory, such
as determining the maintenance plan of the equipment in
advance, or repairing the malfunctioning equipment in time.
In addition, other useful information such as the demand for
a certain product, can be obtained.

Recently, many industrial automation applications have
involved the use of sensors that transfer raw data to pro-
grammable logic controllers (PLCs), where those collected
sensor data will be stored in a capacity constrained memory
first and then processed [13][21]. Reference [5] introduces
a new platform that supports efficient analysis of big data
collected in smart factories by using 5G wireless network,
fog node and cloud computing. Sensors with low price and
good performance are the cornerstone of the application of
industrial Internet of things. Reference [14] shows how pro-
duction machines can be enabled for predictive maintenance
by retrofitting with low-cost sensors, with IIoT and machine
learning.

To process data, some previous studies have combined
IIoT with cloud computing. An enabled framework for
health monitoring is proposed in [6]. The paper presented
a Health IIoT-enabled monitoring framework, where ECG
and other healthcare data are collected by mobile devices
and sensors, which are then securely sent to the cloud
for seamless access by healthcare professionals. In [8], the
authors propose an analytical model of a system with both
cloud servers and edge nodes, and use it to show how to
reduce the cost for computing resources while ensuring
performance constraints for a healthcare monitoring system.

Most systems in IIoT will face the challenge of con-
strained resources, in which the trade-off between computa-
tion and communication costs is often evaluated [10]. Com-
putational task offloading is one of the important research
topic for resource management [22, 24], such as in vehicular
networks [20]. Some paper has addressed the resource allo-
cation problem in mobile edge computing enabled industrial
Internet of things with constrained computing power, which
adopts a two double auction schemes with dynamic pricing
to determine the matched pairs between IIoT MDs and edge
servers [15].

Queuing theory is often used in performance analysis
and optimization which is a very important step of
resource planning and management. Some literatures have
used queuing theory for performance analysis in IIoT.
The problem of performance evaluation of a wireless
sensor node with energy harvesting is solved in [9]. The
paper formulated a single-server queueing system with
two finite buffers in which the flow of customers and
energy units arrive. Following [4], a novel multi-server
queue with heterogeneous customers is formulated and
analyzed to model the operation of a cell based mobile
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communication network. In our paper, we consider dividing
the space of an edge-PLC memory into several memory
allocation instances, and conducting performance analysis
by modeling the problem as several independent single-
server queues where data in the queue may be dropped due
to timeout.

3Mathematical model

Suppose there is a manufacturing system with single edge-
PLC as the access point of multiple types of sensors.
The edge-PLC is equipped with a load memory and work
memory with limited capacity due to cost control. The
perceived data from sensors of the same category will be
stored in a pre-allocated area of the work memory. The
logic to process those data will be put into the pre-allocated
area of the load memory. Since the load memory is usually
implemented using nonvolatile memory (NVM), hence it
is inconvenient to alter the allocation frequently. The goal
of this paper is to analyze the performance of allocation
instances under different system characteristics with the aim
to maximize the global efficiency.

As shown in Fig. 1, without loss of generality, we
abstract two memories into a so called executing storage,
which is divided into several memory blocks of the same
size. Assume there are m types of sensor groups and
each individual sensor group will be assigned with certain
number of blocks (marked as yellow, blue and red) which
can only store and process the corresponding type of data.
The sum of all dedicated memory blocks cannot exceed the
total storage space of the edge-PLC. Furthermore, it is not
necessary to use up the executing storage, but allow some
space being left unused. It is worth noting that each memory
block has a limited capacity and data will be dropped if
the amount exceeds the capacity. Once the allocation is

determined, the dynamic expansion of storage space is not
allowed.

In this paper, we assume that the arrival rate of each
type of data varies and the executing processes is also
independent from each other. Furthermore, even for the
same type of data, its arrival rate would change in different
scenario. We also assume that there are sperate processing
units (i.e., S1, S2, ..., Sm) to handle different types of data
independently, and their computing capacity is disparate as
well. The memory blocks occupied by each type of data
will not be released until it has been processed. Therefore,
different partitioning instance of the executing storage will
result in variant performance outcome facing practical
situations.

The basic rule of processing data is First-Come-First-
Serve. Upon the arriving of any data, if the corresponding
processing unit Si is free, it will be assigned to Si . In the
case that the unit Si is already occupied by the same kind of
data, the system will try to store the data into the memory
blocks, providing there is space available. However, the
incoming data will be dropped if there is no space in the
designated memory blocks.

For simplicity, we consider the scenario where there are
two data types, i.e. m = 2, named Tp1 and Tp2 respectively
as shown in Fig. 1. This assumption can be easily extended
to the case of multiple data types. The arrival data flows
of the two data types behave as the stationary Poisson
process with intensities λ1 and λ2 respectively. Meanwhile,
the service time of the two types of data is exponentially
distributed with parameter μ1, μ1 ≥ 0 and μ2, μ2 ≥
0. Furthermore, the data in the memory is assumed to
be time sensitive, which means it is only valid within a
variational period of time. Data will leave the buffer after
expiration. It is public recognition that the process follows
the exponentially distribution with the parameter α, α ≥
0. It is assumed that this parameter fits all types of data.

Fig. 1 Demonstration of the
system model
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The values of those parameters could change in different
scenario, as the manufacturing requests and merchandise
categories change from time to time. As a result, for each
type of data, we now model it as the queuing system of the
M/M/1/n type, in which n is the amount of memory blocks
allocated to this type of data.

According to above facts and assumptions, once the
scenario switches to another state, parameters of the
queuing model will change as well. For instance, if the data
arrival rate λ1 rises from intensity 1 to 5, the number of
memory blocks allocated to the first data type should be
also increased in order to reduce the potential data loss.
Our goal is to analyze the performance measures of the
proposed model under the memory storage constraint, to
obtain various possible memory partitioning instances in
different scenario, and to consider the relevant optimization
problem.

4 Stationary distribution of the system states

Let n1 and n2 represent the number of memory blocks
allocated to data type Tp1 and Tp2 respectively, and N is
the total size of the executing storage in the edge-PLC, we
have n1 + n2 ≤ N . The system described above is modeled
by a regular irreducible continuous time Markov chain φt

as shown below: φt={it , jt , st }, t ≥ 0, in which, during the
epoch t ,

– t , stands for the time variable;
– it , it ∈ [0, n1 + 1], is the amount of data of type Tp1;
– jt , jt ∈ [0, n2 + 1], is the amount of data of type Tp2;
– st , st ∈ {0, 1, 2, 3}, is the state of the server: s = 0

means all processing units are idle, s = 1 means only
the processing unit S1 is working, s = 2 means only
the processing unit S2 is working, s = 3 means all
processing units are working.

We formulate the Markov chain as the following state
space:(

{0, 0, 0}
)⋃ (

{i, 0, 1}, i ∈ [1, n1 + 1]
)

⋃ (
{0, j, 2}, j ∈ [1, n2 + 1]

)

⋃ (
{i, j, 3}, i ∈ [1, n2 + 1], j ∈ [1, n2 + 1]

)

Then, we can obtain the stationary probabilities of the
system states according to the properties of Markov chains,
e.g., the Markov chain φt is irreducible and has the finite
state space : π(i, j, s) = lim

t→∞ P {it = i, jt = j, st = s},
i ∈ [0, n1 + 1], j ∈ [0, n2 + 1], s ∈ {0, 1, 2, 3}.

The arrival flow of each type of data conforms to the
distribution of different parameters, and after allocating the

storage space, all types of data are processed independently
from each other. Therefore, we treat each type of data as a
separate queue, and the arrival and processing of each type
of data as a separate single-server queuing model problem.
Let us first consider service process analysis for one of the
two types of data.

We use the value of i to describe the macroscopic state
of the Markov chain, and add the values of j and s to
these macroscopic states to describe the specific state of the
system. Then we form the row vectors πi as follows:

π0 = (π(0, 0, 0), π(0, 1, 2), π(0, 2, 2), ..., π(0, n2, 2))

πi = (π(i, 0, 1), π(i, 1, 3), π(i, 2, 3), ..., π(i, n2, 3)),

i ∈ [1, n1 + 1].
The notations used in this paper are listed below:

– I stands for the identity matrix and O represents an
empty matrix of appropriate dimension;

– V 1
c is a column vector consisting of all 1’s, and V 0

r

denotes a zero row vector;
– diag {A1, ..., Al} is the block diagonal matrix with the

diagonal blocks A1, ..., Al ;

According to the properties of Markov chains, we know
that the stationary probabilities vectors in Markov chains
satisfy the following Chapman-Kolmogorov formula. If we
know the infinitesimal generator of Markov chains, then we
can calculate the stationary probabilities vectors according
to this formula.

(π0, π1, ..., πn1)Q = V 0
r

(π0, π1, ..., πn1)V
1
c = 1

where Q is the infinitesimal generator of the Markov chain
φt , t ≥ 0.

According to the formula mentioned above, in order to
obtain the stationary probabilities vector of the Markov
chain, we must first calculate its infinitesimal generator,
which is the transition probability matrix of the Markov
chain. Also, we write down an expression for the generator
of the Markov chain φt , t ≥ 0.

The transfer matrix of theMarkov chain φt , t ≥ 0 isQ.Q
is made up of Qi1,i2 , which is the transition probability from
macrostate i1 to macrostate i2. According to the property
of transfer matrix of Markov chain, the diagonal entries of
the transfer matrices are negative, and the total probability
of leaving state i is represented by the value Qi,i of the
diagonal elements of the transition matrix.

We analyze the transition matrix of Markov chains and
calculate the transition probability between states according
to the conditions described above. The results are as follows.
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Theorem 1 The infinitesimal generator Q of the Markov
chain φt , t ≥ 0, has the following block-tridiagonal
structure:
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Q0,0 Q0,1 O · · · O O

Q1,0 Q1,1 Q1,2 · · · O O

O Q2,1 Q2,2 · · · O O
...

...
...

. . .
...

...
O O O · · · Qn1,n1 Qn1,n1+1

O O O · · · Qn1+1,n1 Qn1+1,n1+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The non-zero blocks Qi1,i2 , i1, i2 ∈ [0, n1 + 1], have
the following form: Q0,0 = diag{−λ1In2+1}, Qi,i =
diag{−(λ1 + μ1 + (i − 1)α)In2+1}, i ∈ [1, n1],
Qn1+1,n1+1 = diag{−(μ1 + n1α)In2+1}, Qi,i+1 =
diag{λ1In2+1}, i ∈ [0, n1], Q1,0 = diag{μ1In2+1},
Qi,i−1 = diag{((i − 1)α + μ1)In2+1}, i ∈ [2, n1 + 1].
Proof As mentioned above, Qi,i refers to the total
probability that the state of the system changes from i. Q0,0

refers to the total probability that the system leaves the state
where the amount of data is 0. This change may only happen
upon one data enters the system. From the previous analysis
we can see that each vector πi has n2 + 1 elements, so we
need to multiply the transition probability by In2+1. And
because the diagonal elements of the transition matrix are
all negative, we have Q0,0 = diag{−λ1In2+1}.

Qi,i, i ∈ [1, n1] represents the probability that the system
leaves the state i, i.e., the probability that the amount of data
in the system will change from i. There are two possible
reasons for this. One is that there is data arriving at the
system, and the probability is λ1. The other is that one data
leaves the system. There are two reasons for one data to
leave the system. One is that the data has been processed
and actively releases the storage space. The other is that the
data has been waiting too long and before getting processed,
and is forced to leave the system due to impatience. When
there are i data in the system, it means that there is one data
being processed and i − 1 data is waiting, so the probability
of impatience caused leaving of data can be calculated as
(i−1)α, we haveQi,i = diag{−(λ1+μ1+(i−1)α)In2+1}.

Similarly, Qn1+1,n1+1 defines the probability that the
amount of data in the system will change from n1+1. n1+1
is the upper limit of the amount of data that the system can
store, so it is impossible to accept new data to enter the
system. Therefore, the change can only be caused by data
leaving the system, this is similar to the case of data leaving
in Qi,i , so Qn1+1,n1+1 = diag{−(μ1 + n1α)In2+1}

Qi,i+1, i ∈ [0, n1] indicates the probability that the
amount of data in the system increases by one, and we can
see that this situation is caused by one data entering the
system, so Qi,i+1 = diag{λ1In2+1}.

Qi,i−1, i ∈ [2, n1 + 1] indicates the probability that the
amount of data in the system is reduced by one. There are

two reasons for the data leaving the system, which have been
explained above, so Qi,i−1 = diag{((i − 1)α + μ1)In2+1}.

We find that the situation mentioned above does not
include Q1,0, which defines the probability that the amount
of data in the system changes from 1 to 0. Because when
there is only one data in the system, it must have been
processed. In this case, the data does not need to wait for
processing, then the only reason the data leaves the system
is to be processed and release the storage space, so Q1,0 =
diag{μ1In2+1}.

The transition matrix we are considering is the state
transition in an infinitesimal time interval, the server can
only process one data and at most one data can arrive
the system in each infinitesimal time interval, the matrices
Qi1,i2, i1, i2 ∈ [0, n1 + 1], are zero matrices when
|i1 − i2| > 1.

Since we treat the service processes of two types of data
as two independent queues, queuing analysis for the other
type of data is the same as above.

5 Numerical and simulation results

5.1 Simulation parameters and performancemetrics

In order to evaluate the validity of the proposed analysis
method built on Markov chain, the simulation is carried out
using synthetic data set derived from practical scenario in a
smart factory. The simulation is run for 50 times with same
parameters and the average of the outcome is adopted to
reduce errors. To be accordance with the mathematic model
in Section 3, we consider two data types in the simulation. In
the rest of this section, the performance measures of the first
type of data Tp1 will be shown as an example. Meanwhile,
the analysis of the second type of data Tp2 is similar.

Before we move to the result analysis, some measure-
ment quantities are listed below according to the calculated
vectors πi, i ∈ [0, n1 + 1].

The probability that server is busy processing the first
type of data Tp1 at an arbitrary moment is:

Pbusy =
n1+1∑
i=1

n2+1∑
j=0

(π(i, j, 1) + π(i, j, 3)) (1)

The average amount of data being queued at an arbitrary
moment is:

Nqueue = (i − 1) × Pbusy (2)

The intensity of output flow of the first type of data Tp1

is:

λout1 = μ1 × Pbusy (3)

Below we are going to show the performance metrics of
the system according to Eqs. 1, 2 and 3.
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The loss probability of an arbitrary first type of data is:

P loss
1 = 1 − λout1

λ1
(4)

Regarding the first type of data, because of overflow of
memory blocks, the loss probability of an arbitrary data
upon arrival is calculated as:

P
(ent−loss)
1 =

n2+1∑
j=0

(π(n1 + 1, j, 1) + π(n1 + 1, j, 3)) (5)

For the first type of data, due to impatience (time out),
the loss probability of an arbitrary data is calculated as:

P
(imp−loss)

1 = 1

λ1
(α

n1+1∑
i=2

n2+1∑
j=0

(π(i, j, 1) + π(i, j, 3))) (6)

In order to compare the experimental results under
different circumstances, we consider a scenario with two
states, namely R1 and R2, which stand for the demand for
products varying at different time. During the peak demand
for the product, more machineries and equipments will be
involved in the production process. Therefore, the sensors
monitoring these devices sequentially collect more data.
Then, the data arrival rate is higher, and the corresponding
data processing rate has to be increased to match that. At
other times, the demand for the product may be lower, so
the requiring amount of sensing data will decrease. We set
up two different sets of parameters for different states and
consider that in state R2 there is higher volume of data for
both types than that in the state R1.

5.2 Results and discussion

In the state R1, we define the system parameters as follows:
for the first type of data (Tp1), the data arrival intensity is
λ1 = 0.5 block per minute, the service intensity is μ1 = 0.8
block per minute. For the second type of data (Tp2), the data
arrival intensity is λ2 = 0.2 block per minute, the service
intensity is μ2 = 0.5 block per minute. Here the impatience
intensity is α = 0.5 block per minute.

In the state R2, we define the system parameters as
follow: for the first type of data, the data arrival intensity is
λ1 = 1 block per minute, the service intensity is μ1 = 2
blocks per minute, for the second type of data, the data
arrival intensity is λ2 = 2 blocks per minute, the service
intensity isμ2 = 2.5 blocks per minute. Here the impatience
intensity is α = 1 block per minute.

In order to compare the system performance in different
circumstances with the same settings, we fix the total
executing storage of the edge-PLC to 50kB, and size of the
first type of data to 1 block, size of the second type of data
to 2 blocks. In the experiment, we assume that processing

Fig. 2 Performance evaluation of the first type of sensor data under
state R1

units have sufficient processing power. Now, let us take a
look at the results from the experiment for the first state R1.

Figure 2a and b show the loss rate P
(ent−loss)
1 of the first

type of data Tp1 due to insufficient memory space and the
loss rate P

(imp−loss)

1 due to timeout in the first state R1,
respectively.

According to the figure, P
(ent−loss)
1 decreases with the

increase of n1, while P
(imp−loss)

1 increases with the increase
of n1. This is because when the allocated memory is large
enough, the arrival data will have little chance to be rejected
due to no storage space, and the main reason for data loss
is overlength waiting time. Therefore, when n1 is large
enough, P

(imp−loss)

1 reaches a relatively stable maximal
value, because there is a lot of data waiting in the queue at
this time. The longer the queue is, the longer the data needs
to wait, and the higher the probability of data loss due to
longer waiting time. When n1 is 0, P

(ent−loss)
1 reaches the

largest value and P
(imp−loss)

1 is 0. At this point, data is lost if
the same type of data is already being served when the data
arrives. With the absence of waiting area, we can naturally
eliminate the overtime factor.

Figure 3a and b show the loss rate P
(ent−loss)
2 of the

second type of data due to insufficient memory space and
the loss rate P

(imp−loss)

2 due to timeout in the first state R1,
respectively.

Fig. 3 Performance evaluation of the second type of sensor data under
state R1
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Fig. 4 Comprehensive performance evaluation of two types of data
under state R1

When the size of allocated memory is zero for all types of
data, P (ent−loss)

1 is larger than P
(ent−loss)
2 because the arrival

rate of the first type of data is larger than the second type of
data. The maximal value of P

(imp−loss)

1 is larger than that of

P
(imp−loss)

2 , because the value of λ1
μ1

is larger than λ2
μ2
. λ1

μ1

and λ2
μ2

are the intensity of the data service rate relative to
the data arrival rate.

Figure 4a and b show the integrated loss rate of the two
types of data in the first state R1.

Obviously, the loss rate of both types of data decreases
with the increase of the number of the allocated memory
blocks. As one can imagine, the data loss rate is the greatest
when n1 or n2 equals to 0, where P loss

1 = 0.38461538
and P loss

2 = 0.28571428, because any arrive data will be
immediately rejected if the processing unit is busy. When
n1 and n2 increase, the data loss rate will gradually reach
the minimum value. However, the minimum value is not 0,
because before getting the service, some data may reach its
maximal time-to-live, TTL. Once n1 ≥ 9, P loss

1 will reach
the minimal value, which is 0.22063176. If n2 ≥ 7, the
minimal value of P loss

2 is 0.17580011. Even if the allocated
storage space is large enough to store entire data, some may
be dropped because of timeout.

To analyze the influence of different allocation instances,
Fig. 5 illustrates the total loss probability of the two types
of data in the state R1. Here, we calculate the total loss
probability as follow: P losstotal = P loss

1 + P loss
2 .

We need to consider how to allocate limited memory
to different types of data so that more data can be served
and the system performance can be optimized. We can
see from Fig. 5, if n1 = 0, n2 = 0, P losstotal is very
high, which reaches the maximal value of 0.67032967.
This result is easy to understand, once each type of data
is assigned with zero memory, the data loss rate is the
highest, both individually and collectively. From the figure,
we can also see that the total loss rate can be minimized
in many multiple combinations of n1 and n2, for instance,
n1 = 15, n2 = 12 and n1 = 15, n2 = 13, where
the minimum value is 0.39643187. As we can list all the

Fig. 5 Total Loss probability P losstotal as function of n1 and n2

allocation instances that achieve the global optimization of
the system perform, we may select the best configuration
among them according to the manufacturing goal.

We regard two states as independent cases , each of them
should find different allocation strategies. Then, we present
the results of the experiment in the state R2.

Figure 6a and b respectively show the loss rate
P

(ent−loss)
1 due to insufficient memory space and

P
(imp−loss)

1 due to timeout. We omit the analysis here
because the results and conclusions of this experiment are
similar to those above.

Figure 7a and b illustrate two loss rates of the second type
of data in the state R2, which are similar with the result in
Fig. 6.

As shown in Fig. 8, the loss rate of two types of data also
has extreme values, including the maximal value and the
minimal value. When n1 = 0, P loss

1 reaches the maximal
value of 0.33333333. When n1 = 10, P loss

1 reaches the
minimum value of 0.16395341.When n2 = 0, P loss

2 reaches
the maximal value of 0.44444444. When n2 = 11, P loss

2
reaches the minimum value of 0.23736939. The figure
shows that the overall loss rate for the first data type is

Fig. 6 Performance evaluation of the first type of sensor data under
state R2
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Fig. 7 Performance evaluation of the second type of sensor data under
state R2

greater in the state R1 than in the state R2 because the value
of λ1

μ1
is larger in the stateR1 than in the stateR2. The overall

loss rate for the second data type is less in the state R1 than
in the state R2 while the value of λ2

μ2
is less in the state R1

than in the state R2.
Figure 9 illustrates the total loss rate of the two types of

data integrated in the state R2. The condition to achieve the
maximal value of P losstotal is as same as that in the state
R1, i.e., n1 = 0, n2 = 0. The maximal value is 0.77777777,
which is larger than that in the state R1. There are also many
allocation instances to minimize the total loss rate, such as
n1 = 12, n2 = 18, and n1 = 12, n2 = 19. Then, the value
of P losstotal is 0.40132280. We can see that in terms of the
overall data loss rate of the system, the state R2 is higher
than the state R1. Therefore, the data loss rate is not only
related to how we allocate memory but also the data arrival
rate and service rate. Nevertheless, we can solve the optimal
memory allocation problem with system parameters n1 and
n2 aiming at different scenarios.

According to above simulations, we find that the best
allocation of memories for the target scenario is not a point
but an area, which means user can incline the allocation to
part of the data without affecting the total performance.

Fig. 8 Comprehensive performance evaluation of two types of data
under state R2

Fig. 9 Total Loss probability P losstotal as function of two types of
data

6 Conclusion

In this paper, we consider an edge-PLC enabled manufactur-
ing system, where different types of sensor data is collected
and processed by the separated processing unit. All data
shares the same space-constrained executing storage which
is a bottle neck of the system. At the same time, the system
may shift from states to states, where parameters change
distinctly. To analyze the system performance, we view it
as the one composed of multiple independent single-server
queues and model it as the finite state Markov chain of the
M/M/1/n type. For both queuing systems, we calculated
the stationary distribution of system states and performance
measures. Through the results obtained, we can analyze how
to allocate memory space for two kinds of data in different
states to minimize the total loss rate of data. Our results can
easily be extended to cases of more than two types of data.
In [7], an interesting idea using Fluid Dynamics to predict
time-evolving rating is proposed. Inspired by this work, in
the future, we are trying to extend the performance analysis
of task flows using Fluid Dynamics.
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